Имитационная модель оценки точности измерений электрофизических параметров многослойных диэлектрических и магнитодиэлектрических покрытий методом поверхностных электромагнитных волн

А. И. Казьмин, email: alek-kazmin@yandex.ru
 П. А. Федюнин, email: fpa1@yandex.ru
 В.А. Манин, email: fanni.05@mail.ru
 П.Ю. Корепанов

Военный учебно-научный центр Военно-воздушных сил «Военновоздушная академия им. проф. Н. Е. Жуковского и Ю. А. Гагарина» (г. Воронеж)

Аннотация. Представлена имитационная модель измерений, реализованная на основе системы электродинамического моделирования CST Microwave studio и системы Matlab. Приведены результаты имитационного моделирования по оценке диэлектрической проницаемости и толщины однослойного диэлектрического покрытия на металлической подложке при различных значениях среднего квадратического отклонения уровня шума в измерительных данных.

Ключевые слова: многослойное диэлектрическое покрытие, метод поверхностных электромагнитных волн, имитационная модель, электрофизические и геометрические параметры.

Введение

Для более гибкой оценки потенциальных возможностей методов и способов контроля электрофизических и геометрических параметров (ЭФГП) многослойных диэлектрических и магнитодиэлектрических материалов и покрытий (МДММП), основанных на их оценке по характеристикам и параметрам поля поверхностных электромагнитных волн (ПЭМВ) путем решения нелинейных уравнений методами параметрической оптимизации, разработана имитационная модель реальной измерительно-вычислительной системы (ИВС) [1].

В обобщенном виде методы и способы контроля ЭФГП многослойных диэлектрических и магнитодиэлектрических материалов и покрытий ПЭМВ сводятся к следующей последовательности действий [2,3]:

1. Измерение экспериментальной частотной зависимости действительной части комплексного коэффициента ослабления (КО)

поля ПЭМВ
$$\mathbf{A}_{\mathfrak{H}} = \begin{bmatrix} \alpha'_{\mathfrak{H}}, f_1, \xi_1, \dots, \alpha'_{\mathfrak{H}}, f_K, \xi_1 \end{bmatrix}^T$$
, где

 $\xi_1 = \dot{\epsilon}_n, ..., \dot{\epsilon}_N, \dot{\mu}_n, ..., \dot{\mu}_N, t_n, ..., t_N$ – вектор, подлежащих оценке ЭФГП, $\dot{\epsilon}_n, ..., \dot{\epsilon}_N$ – комплексные диэлектрические проницаемости, $\dot{\mu}_n, ..., \dot{\mu}_N$ – комплексные магнитные проницаемости, $t_n, ..., t_N$ – толщины МДММП, методом зонда.

2. Составление дисперсионного уравнения для ПЭМВ в многослойном РППМ с учетом количества слоев N.

3. Оценка вектора ЭФГП $\hat{\xi}_1 = \hat{e}_n, \dots, \hat{e}_N, \hat{\mu}_n, \dots, \hat{\mu}_N, \hat{f}_n, \dots, \hat{f}_N$ исследуемого многослойного МДММП осуществляется путем минимизации квадратичного функционала (целевой функции), построенной, как невязка между вектор-столбцом экспериментальных A_3 , и вектор-столбцом вычисленных теоретических значений A_{τ} комплексных КО ПЭМВ путем решении дисперсионного уравнения, на наборе частот f_k , $k = 1, 2, \dots, K$, в заданной полосе частот $\Delta f = f_k - f_1$:

$$\hat{\xi}_{1} = \arg \min_{\xi_{1} \in \xi_{ass}} \left(\frac{1}{K} | \mathbf{A}_{3}^{-} \mathbf{A}_{T} |^{2} + \overline{\sigma} \left(\sum_{n=1}^{N} q_{n}^{\dot{e}} \| \hat{\varepsilon}_{n}^{-} - \hat{\varepsilon}_{n0}^{-} \|^{2} + \sum_{n=1}^{N} q_{n}^{\dot{\mu}} \| \hat{\mu}_{n}^{-} - \hat{\mu}_{n0}^{-} \|^{2} + \sum_{n=1}^{N} q_{n}^{i} \| t_{n}^{-} - t_{n0}^{-} \|^{2} \right),$$
(1)

где а , и а , – вектор-столбцы, со следующими компонентами:

$$\mathbf{A}_{3} = \begin{bmatrix} \alpha'_{3} & f_{1} & -j\alpha'' & f_{1}, \mathbf{\varphi}\alpha & , \dots, \alpha'_{3} & f_{K} & -j\alpha'' & f_{K}, \mathbf{\varphi}\alpha \end{bmatrix}^{\mathsf{T}};$$
$$\mathbf{A}_{\mathsf{T}} = \begin{bmatrix} \alpha'_{\mathsf{T}} & f_{1}, \xi_{1} & ,\dots, \alpha'_{\mathsf{T}} & f_{K}, \xi_{1} \end{bmatrix}^{\mathsf{T}};$$
(2)

где $q_n^{\dot{e}}$, $q_n^{\dot{\mu}}$, q_n^t – веса, определяющие степень априорной информации о комплексных диэлектрических проницаемостей, комплексных магнитных проницаемостей и толщинах слоев МДММП; $\dot{\varepsilon}_n$, $\dot{\mu}_n$, t_n – комплексные диэлектрические проницаемости, комплексные магнитные проницаемости и толщины слоев МДММП; $\dot{\varepsilon}_{n0}$, $\dot{\mu}_{n0}$, t_{n0} – найденные с учётом априорной информации о составляющей среднее значение п-й составляющей вектора ЭФГП из области допустимых значений $\dot{\varepsilon}_{n0} \in \dot{\varepsilon}_{nmin}, \dots, \dot{\varepsilon}_{nmax}$, $\dot{\mu}_{n0} \in \dot{\mu}_{nmin}, \dots, \dot{\mu}_{nmax}$, $t_{n0} \in t_{nmin}, \dots, t_{nmax}$; $^{\sigma}$ – параметр регуляризации.

2. Имитационная модель оценки точности измерений

Такие элементы ИВС, как антенна возбуждения поверхностных электромагнитных волн АВ, приёмная антенна (измерительный зонд)

ПА, а также исследуемое покрытие на металлической подложке ИП, блоке формирования коэффициентов ослабления реализованы в БФКО ЭД молели системе электродинамического в виле в CST Microwave studio (Simulia corporation). моделирования Геометрические размеры данных элементов точно соответствуют их размерам реальном измерительном комплексе. Для оценки в адекватности разработанной модели проведено сравнение модельных поля ПЭМВ стандартного образца полиметилметакрилата КО $\dot{\epsilon}^{\approx}$ 2,7 - j0,0 8 1 размером 200×100 мм и толщиной 1 мм $\alpha'_{CST}(f_k,\xi'_1)$ с теоретическими коэффициентами ослабления $\alpha'_{\tau}(f_k,\xi'_1)$ найденными дисперсионного уравнения [2,3], при решении а также с экспериментальными КО $\alpha'_{\mathfrak{s}}(f_k,\xi'_1)$ измеренными на реальном измерительном комплексе. Структурная схема имитационной модели приведена на рис.1.

Рис. 1. Структурная схема имитационной модели

Отличие модельных КО от теоретических составляет не более 0,08 %. Относительные погрешности оценки диэлектрической проницаемости и толщины полиметилметакрилата, полученные путём решения обратной задачи (1) по частотной зависимости $\alpha'_{CST}(f_k,\xi'_1)$ составляют не более 0,05 %. Таким образом, разработанная в CST

Місгоwave studio модель обеспечивает получение КО ПЭМВ с минимальной методической погрешностью, т. е. КО практически соответствуют теоретическим значениям $\alpha'_{\tau}(f_k,\xi'_1)$ Кроме того, при решении обратной задачи (1) оценки ЭФГП получены с минимальными погрешностями.

Отличие экспериментальных КО $\alpha'_{2}(f_{k},\xi'_{1})$ от модельных значений составляет не более 6 % и обусловлено влиянием шумов (инструментальные погрешности измерительного комплекса и другие погрешности, связанные с процессом эксперимента). Экспериментальные относительные погрешности оценки действительной и мнимой частей комплексной диэлектрической проницаемости ε'_n , ε''_n , а также толщины t_n составляют не более 7 и 5 % соответственно. Экспериментальные значения КО в имитационной модели формировали в блоке формирования погрешностей измерений коэффициентов ослабления БФПИ в виде суммы значений модельных КО $\alpha'_{CST}(f_k,\xi'_1)$ и функции, имитирующей влияние шума. На точность определения КО ПЭМВ влияет множество случайных факторов. оценки Поэтому погрешность указанных коэффициентов моделировалась аддитивным некоррелированным гауссовым шумом с нулевым математическим ожиданием $m \begin{bmatrix} n & f_k \end{bmatrix} = 0$ и заданным

уровнем дисперсии σ_k^2 . Экспериментальная проверка на реальной ИВС показала, что среднее квадратическое отклонение (СКО) уровня шума при измерениях ЭФГП стандартного образца полиметилметакрилата, составляет 0,0015–0,0020 и подчиняется нормальному закону распределения.

Таким образом, экспериментальные значения КО ПЭМВ $\alpha'_{,s}(f_k,\xi'_1)$ при задействовании при моделировании блока БФКО ЭД, в блоке БФПИ формировали на основе выражения:

$$\alpha'_{3}(f_{k},\xi'_{1}) = \alpha'_{CST}(f_{k},\xi_{1}) + n(f_{k}), \quad k = 1,...,K$$
(3)

где *n*(*f_k*) – шум, воздействующий на k-измерение и обусловленный инструментальными погрешностями ИВС и другими погрешностями при проведении эксперимента.

При имитационном моделировании без использования блока БФКО ЭД экспериментальные значения $\alpha'_{, f_k, \xi_1}$ формировали на основе выражения (3).

Блок определения теоретических значений комплексных коэффициентов ослабления БОТКО реализует решение дисперсионного

уравнения, а блок минимизации целевой функции БМЦФ реализует операцию по решению обратной задачи, путём варьирования составляющими вектора ξ_1 . Данные блоки реализованы в системе Matlab. При этом решение обратной задачи в блоке БМЦФ осуществляется с помощью генетического алгоритма, реализованного в виде функции «ga» приложения Global Search пакета Matlab.

3. Моделирование измерения ЭФГП многослойных диэлектрических покрытий с помощью имитационной модели

На рис. 2а представлены зависимости средней относительной погрешности оценки диэлектрической проницаемости $\delta(\mathcal{E})$ однослойного покрытия с толщиной b = 1 мм при увеличении значений диэлектрической проницаемости слоя от 1,2 до 20, для трех значений СКО уровня шума: 0,001; 0,003; 0,005 [3]. На рисунке 26 представлено, как при этом меняется погрешность оценки толщины слоя $\delta(\hat{t})$. Коэффициент ослабления поля ПЭМВ определяли в диапазоне частот 9–10 ГГц с шагом по частоте 0,1 ГГц (количество частот N=10) [3].

Рис. 2. Зависимости средней относительной погрешности оценки ЭФГП покрытия при фиксированных значениях СКО уровня шума $(1 - \sigma = 0.001; 2 - \sigma = 0.003; 3 - \sigma = 0.005)$

Анализ зависимостей рис. 2а для однослойного покрытия показывает, что относительная погрешность $\delta(F)$ оценки диэлектрической проницаемости слоя, при фиксированном значении уровня СКО шума и толщине слоя, уменьшается с возрастанием их

величины. Относительная погрешность оценки толщины слоя $\delta(\hat{t})$, также уменьшается. При этом, точность оценки толщины слоя в 2–2,5 раза выше точности оценки диэлектрической проницаемости.

По результатам имитационного моделирования, метод дает оценки диэлектрической проницаемости и толщины для однослойного покрытия при СКО уровня шума $\sigma = 0.003$, во всем диапазоне исследуемых значений диэлектрической проницаемости (1,2–20) с погрешностью не больше 10% с доверительной вероятностью 0,95 [3].

Заключение

Таким образом, разработана имитационная модель, позволяющая оценивать точность измеребния электрофизических и геометрических параметров многослойных МДММП в зависимости от их электрофизических и геометрических параметров, учитывающая значение СКО уровня шума в измерительных данных и ширину полосы частот измерений.

Список литературы

2. Михайлин, Ю.А. Специальные полимерные композиционные материалы / Ю.А. Михайлин. – СПб.: Научные основы и технологии, 2008. – 660 с.

3. Казьмин, А.И. Методологические принципы определения электрофизических параметров материалов и покрытий со сложной внутренней структурой с помощью поверхностных электромагнитных волн / А.И. Казьмин // Дефектоскопия. –2022. – № 3. – С. 34–49.

4. Казьмин, А.И. Оценка точности реконструкции электрофизических и геометрических параметров многослойных диэлектрических покрытий многочастотным радиоволновым методом поверхностных медленных электромагнитных волн / А.И. Казьмин, П.А. Федюнин // Измерительная техника. – 2020. – 8. С. – 51–58.